Page 47

EN-Aug17-eMag4

based on the latest information, in a very transparent way and share this across all project stakeholders. Leapfrog allows our geology team to handle numerous inputs of disparate data types, and comprehend the impact in dynamic 3D models to gain an accurate picture of the geology. “Leapfrog Geo 4.0’s new structural modelling tools also provide more robust and accurate ways to constrain the volumes occupied by faults and fractures in structurally complex areas, and to estimate suitable volumes of rock for final disposal of spent nuclear fuel.” Final disposal facility of spent nuclear fuel is tightly regulated internationally to safeguard people and the environment from harmful pollution due to its uranium and plutonium content. Posiva hopes to gain regulatory approval from Finland’s Radiation and Nuclear Safety Authority (STUK) to start operating the repository and disposal of nuclear waste, into bedrock tunnels that will be excavated for a century, in the early 2020s. Dr Mattila says, “Such a significant environmental infrastructure project is subject to close scrutiny and monitoring. We need to keep regulators accurately informed of progress prior to proceeding to excavation. Leapfrog’s geological models provide powerful 3D visualisation and Leapfrog Central further allows us to store and disseminate model updates in an unprecedented way and also to look at how our models have evolved with time. “Capturing the process of building geological 3D models from constantly accumulating data from step-wise construction of the facilities, further increases transparency and repeatability.” Long term storage solutions for spent nuclear fuel Some 449 nuclear power plants in over 30 countries are now generating more than 10% of the world's electricity production. Finland is leading the way with their project for a high level geological repository, while other countries are accumulating material to warrant a largescale repository project. Countries such as Sweden and France, are likely to be the next to progress long term storage projects according to global experts. Other countries, like the US, attempting to develop long term storage solutions have stalled with political delays and protracted litigation, and therefore have yet to address the problem. Mr Maloney says, “Safe final disposal of radioactive waste fuel is a global challenge. Commercial nuclear energy has been generated for over half a century, and the total global inventory of spent uranium being stored in short term facilities is estimated at around 266,000 tonnes.” Spent fuel reduces in temperature to less than 100 degrees Celsius in 30-50 years, at which point it is ready for encapsulation and indefinite storage or permanent disposal underground. “Our technology can readily tackle the magnitude and complexity of geological modelling to identify and manage geology that is suitable for long-term storage. This geological understanding can also be shared with all stakeholders to ensure the confidence in decision making required for the excavations to continue for a century,” he says. Taking on other global environmental and energy challenges Aranz Geo is contributing globally to a wide variety of other mining, civil and environmental and energy industry projects from geothermal energy to hydro dams, transport tunnels, mining, water quality and resource management projects. Mr Maloney says, “We’re taking on dozens of challenging projects in over 30 countries from our global headquarters in New Zealand, and 13 other offices around the world; that’s what gets our 184 people out of bed every morning.” Regulatory requirements for final disposal facility www.engineeringnews.co.nz 47


EN-Aug17-eMag4
To see the actual publication please follow the link above